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Resonant Frequencies of Higher Order
Modes in Cylindrical Anisotropic
Dielectric Resonators

Michael E. Tobar, Student Member, IEEE, and Anthony G. Mann

Abstract —An improved method is developed which allows the
determination of mode frequencies to high accuracy in cylindri-
cal anisotropic dielectric resonators. This is an extension of
Garault and Guillon’s method from isotropic to anisotropic
dielectrics, applied to four different classes of field patterns. The
theory is confirmed by room temperature measurements in two
sapphire crystals of different aspect ratios, and in cryogenic
sapphire resonators used in high stability fixed and tunable
oscillators. The sensitivity of mode frequency to dimensional
and permittivity perturbations is analyzed.

1. INTRODUCTION

HE HIGHER order modes in cylindrical sapphire

dielectric resonators at cryogenic temperatures [1]
can exhibit extremely high Q factors (> 107) and can be
used to construct ultrastable low noise microwave oscilla-
tors [2]-[5]. Other anisotropic dielectric crystals such as
rutile [6], [7] and lithium niobate [8] offer higher permit-
tivities but also much higher losses.

A method which calculates the frequency of the lowest
order mode in a cylindrical isotropic dielectric [9] has
been extended to higher order modes in an anisotropic
crystal. Previous equations are shown only to be valid for
guasi TE modes with even mode number in the axial

direction. Four different axial match equations are de- °

rived depending whether they are quasi TE or quasi TM,
and have an odd or even axtal mode number. A general
radial match equation is derived. Combining it with the
relevant axial equation forms a set of two coupled tran-
scendental equations which can be solved numerically.
This is a general treatment of higher order modes in an
anisotropic medium, although previously whispering
gallery mode approximations for anisotopic crystals have
been used successfully [10], [11].

Theory is applied to two sapphire crystals of different
aspect ratios. Very good agreement is found even though
the permittivity is only about ten. The anisotropy forces
the TM mode families to be lower in frequency than the
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TE, which explains the discrepancy between theory and
experiment of previous work [2]. The theory presented
successfully predicts frequency shifts from room to liquid
helium temperature due to the change in permittivity, and
the tuning range of a tunable sapphire resonator due to
the effective change in height.

II. THEORY

Cylindrical anisotropic crystals in free space are anal-
ysed relative to the coordinate system defined in Fig. 1,
with the c-axis of the crystal parallel to the z axis. The
permittivity parallel and perpendicular to the c-axis is
defined as €, and e,, respectively. Thus €, =€, and we
assume no off diagonal terms in the permittivity tensor.-

The problem is solved using Maxwell’s equations for
anisotropic media. Assuming the divergence of E is not
dependent on z, then applying separation of variables on
the z component of the electromagnetic field, we can
write

2= Al (kgr)cos(m¢) (Pyexp(— jBz)
sin(md)

+ Pyexp(+ jBz))
Ez2 = CKm( koutr) COS(m¢) (Pl eXp( - JIBZ) ‘
sin(mo)
+ Py exp(+ jBz))
E.,=EJ, (kgr)cos(m¢) exp(—az)
sin(mde)
H,,= BJ, (kyr) sin(me) (P, exp(—jBz)
cos(mae)
+ Pyexp(+jBz))
sz = DKm(koutr) sm(md)) (Pl CXp(_ ]:BZ)
cos(mo)
+ Pyexp(+jBz))
H,,=FJ] (kyr)sin(me) exp(—az)
cos(mo)
where kZ=-¢€k?— B2 ki =¢,ki—pB* and k2, =p*—
k?. Here m is the azimuthal mode number, B the longitu-
dinal dielectric propagation constant, k, the free space

(1a)

(1b)
(1c)

(1d)

(le)
(1f)
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Fig. 1. Open dielectric crystal is analyzed in cylindrical coordinates
{r.¢, z}. Resonant frequencies are solved by matching tangential fields
between regions 1 and 2, and regions 1 and 3.

wave number, k,, the radial propagation constant out-
side the dielectric, and k, and k, the radial dielectric
propagation constants parallel and perpendicular to the
c-axis, respectively. From the z component, Maxwell’s
equations can then be used to obtain all other electro-
magnetic field components [12].

A. Radial Match

By matching tangential components of the H and E
fields between regions 1 and 2, the following transcenden-
tal equation is obtained:

€ Im(XE) XE N Ka(y) )( Tn(¥m) | K (y)
x?{Jm(xE) me(y) xHJm(xH) me(y)
(x5 ey (xf +y?

C ATV RS

where xp =kpd /2, x;y=kyd/2and y=k_,d /2. For a
fixed diameter this equation is a function of two variables,
ko and B.

In general y becomes imaginary for the lower order
whispering gallery-like mode families, where B is small
and m is large. In this case the Evanescent Bessel Func-
tion becomes a Hankel Function of the second kind [13].
Hence we employ algorithms which allow complex argu-
ments,

B. Axial Maich

Field components E_ and H, must be orthogonal in
space and hence cannot coexist with the same depen-
dence on z. Assuming the same dependence however
simplifies proceedings by allowing the axial match to be
calculated independently of the radial match. To be con-
sistent with the z dependence in (1a)—(1f), quasi TE
modes (E, =0) or quasi TM modes (H, =~ 0) must be
assumed. Four different transcendental equations are de-
rived by matching tangential fields between regions 1 and
3. The radial and axial mode numbers are n and p,
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Fig. 3. TM modes are excited by creating an E, field, while TE modes
are excited by creating a H, field.

respectively:

TE,,.,.s Deven;  ki= Zlifilz%ﬁlh——/i) (3a)
podd; k= Bzﬂtz—fﬁl@ (3b)

™,y .5 P even; ké=ﬁ21+(taniﬁf{2)/s’)z (3¢)

Equation (3a) is the same as derived by Garault and
Guillon [9], which was solved with the isotropic version of
Equation (2).

C. Solving the Coupled Equations

Equations (2) and (3) are solved using Mathematica
[14]. Solutions are found graphically on a x% versus y2
graph, then more accurately using a Newton—Raphson
technique. For a given value of m, (2) gives an infinite set
of solutions in {x%,y?} space, which are almost perpen-
dicular to the x% axis. This distinguishes the radial mode
number #, and whether they are TE or TM. Equation (3)
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Fig. 4. Mode frequencies and Q values as a function of azimuthal mode number, for a 50.0 mm diameter and 30.0 mm
high sapphire crystal. Theoretical points are plotted as error bars due to uncertainties in dimensions and permittivities,
while experimental points are joined by lines.

gives an infinite set of solutions nearly parallel to the xZ
axis. Mode frequencies are solved from the intersection of
these two solution sets. Care must be taken to avoid
spurious solutions due to the restriction of p being either
even or odd or modes being TE or TM. Fig. 2 illustrates
how the solution of the TE,; in the smaller sapphire is
found graphically.

III. EXPERIMENTAL VERIFICATION
A. Cylindrical Oriented Sapphire

Fig. 3 shows how quasi TE and TM modes are distin-
guished. To excite a TM or TE mode, an E, or H, field is
excited, respectively. In reality all modes are hybrid, and
experimentally one can excite higher order axial mode
number families with either a TM or TE probe. Analysis

of azimuthal and axial mode numbers is done by observ-
ing the H, or E, field, respectively.

An experimental study of resonant modes was con-
ducted from 8 to 12 GHz for two cylindrical pieces of
sapphire with different aspect ratios. Figs. 4 and 5 com-
pare experimental and theoretical mode frequencies, and
observed open resonator Q values, There is better agree-
ment for the whispering gallery type families of low axial
mode number p, as they are more TM or TE like. The
difference between the calculated and measured mode
frequencies generally increases with p and decreases with
m. In the 50.0 mm diameter sapphire crystal for modes
with p =0 the error is less than 0.1%, which is smaller
than estimated uncertainties in permittivities and dimen-
sions, while above p = 2 errors can be of the order 1% in
TE modes and 2% in TM modes [15]. In the 31.8 mm
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Mode frequencies and Q values as a function of azimuthal mode number, for a 31.8 mm diameter and 30.2 mm

high sapphire crystal. Theoretical points are plotted as error bars due to uncertainties in dimensions and permittivities,
while experimental points are jomned by lines.

diameter sapphire crystal, the errors are generally larger:
for example about 0.2% for p = 0 modes.

The permittivity of sapphire above and below X-band
has been measured previously with slightly conflicting
results [16], [17]. To be consistent with both reports we
can be confident that e, is 11.6245 +0.0355 and 11.355+
0.015 at 300 K and 4 K, respectively, and ¢, is 9.407 £0.012
and 9.2895+0.0255 at 300 K and 4 K, respectively.

The power radiated from a given mode of the open
dielectric resonator could be calculated from the field
components (1) by integrating the Poynting vector over
the resonator surface, but is beyond the scope of this
paper. Within each mode family the power radiated from
the open resonator decreases as the azimuthal mode
number increases [10]. The observed open resonator Q
thus increases monotonically with » to a limit set by the
dielectric loss tangent. At rooqm temperature and 10 GHz

this limit is about 2-10° and scales inversely with fre-
quency [1]. For the 50 mm diameter sapphire the density
of modes in the 11 GHz region is large and interacting
modes are common. In this region some mode Q’s may
actually decrease for an increase in m due to reactive
coupling to nearby low O modes [18].

B. Frequency Sensitivity ‘

The sensitivities of mode frequency to perturbations in

‘permittivities and dimensions (Ae,, Ae,, Ad and Ah)

have been calculated for the large and small sapphires.
To within the precision of the calculation (0.2 to 2%) the
sums of the sensitivities obey the expected relations:

of e, If e, 1

+ —_
de, f ode, f 2
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. General trends are observed in the sensitivities. Within
a mode family as azimuthal mode number increases the
dependence of mode frequency on diameter increases.
For both TE and TM.modes with high azimuthal and
low axial mode number the frequency depends mainly
(~98%) on the diameter. As the axial mode number
increases the frequency dependence on the height in-
creases, and becomes comparable with diameter when
p >3 for TE modes and p > 2 for TM modes. Quasi TE

modes have most of their electric field perpendicular to

the z-axis and are seen to depend manily on €,, while
quasi TM modes have most of their electric field parallel
to the z-axis and depend mainly on e,. Within a mode
family this dependence on-the respective dielectric con-
‘stant increases with azimuthal mode number. For the
higher order axial mode families (p >3 for TE modes
and p > 2 for TM modes) the dependences on €, and e,
are about equal. Solutions are then in the hybrid regime.
This is why solutions are less accurate for these families
as (3) assumes pure TE and TM modes while (2) does not.

C. Applications to Sapphire Loaded Superconductmg
Cavities (SLOSC)

Details of a high stability 9.73 GHz SLOSC oscillator
have been presented previously [3], [4]. The operational
sapphire resonance can now be identified as TE,;. The-
ory predicts a 66 MHz shift in frequency when cooled due
to the change in dielectric constant, exactly what is mea-
sured.

Details of a tunable SLOSC have been presented previ-
ously [18], [19]. It consists of a 3 cm diameter cylindrical
sapphire crystal, and an axially driven tuning disc 0.3 cm
thick. Tuning ranges can be predicted with presented
theory. Modes with higher tuning ranges have larger axial
mode numbers. Modes analysed previously [18] at 4 K are
now identified as TEg; 5, ; at 10.221 GHz and TMg, ., at
10.44 GHz. Tuning ranges of these modes are predicted
to be 94 and 99 MHz, respectlvely, which agrees favorably
with experiment.

1V. ConcLusioN

Improved theory for multimodeé analysis of anisotropic
dielectric resonators was presented. This has lead us to a

very good understanding of electromagnetic resonances in
sapphire crystals, with potential application to design.
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