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Abstract —An improved method is developed which allows the

determination of mode frequencies to high accuracy in cylindri-
cal anisotropic dielectric resonators, This is an extension of

Garault and Guillon’s method from isotropic to anisotropic

dielectrics, applied to four different classes of field patterns. The

theory is confirmed by room temperature measurements in two

sapphire crystals of different aspect ratios, and in cryogenic

sapphire resonators used in high stability fixed and tunable

oscillators. The sensitivity of mode frequency to dimensional

aud permittivity perturbations is analyzed.

I. INTRODUCTION

T HE HIGHER order modes in cylindrical sapphire

dielectric resonators at cryogenic temperatures [1]

can exhibit extremely high Q factors ( > 107) and can be

used to construct ultrastable low noise microwave oscilla-

tors [2]–[5]. Other anisotropic dielectric crystals such as

rutile [6], [7] and lithium niobate [8] offer higher permit-

tivities but also much higher losses.

A method which calculates the frequency of the lowest

order mode in a cylindrical isotropic dielectric [91 has

been extended to higher order modes in an anisotropic

crystal. Previous equations are shown only to be valid for

quasi TE modes with even mode number in the axial

direction. Four different axial match equations are de-

rived depending whether they are quasi TE or quasi TM,

and have an odd or even axial mode number. A general

radial match equation is derived. Combining it with the

relevant axial equation forms a set of two coupled tran-

scendental equations which can be solved numerically.

This is a general treatment of higher order modes in an

anisotropic medium, although previously whispering

gallery mode approximations for anisotopic crystals have
been used successfully [101, [111.

Theory is applied to two sapphire crystals of different

aspect ratios. Very good agreement is found even though

the permittivity is only about ten. The anisotropy forces

the TM mode families to be lower in frequency than the
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TE, which explains the discrepancy between theory and

experiment of previous work [2]. The theory presented

successfully predicts frequency shifts from room to liquid

helium temperature due to the change in permittivity, and

the tuning range of a tunable sapphire resonator due to

the effective change in height.

II. THEORY

Cylindrical anisotropic crystals in free space are anal-

ysed relative to the coordinate system defined in Fig. 1,

with the c-axis of the crystal parallel to the z axis. The

permittivity parallel and perpendicular to the c-axis is

defined as e= and e,, respectively. Thus e+ = e, and we

assume no off diagonal terms in the permittivity tensor. -

The problem is solved using Maxwell’s equations for

anisotropic media. Assuming the divergence of E is not

dependent on z, then applying separation of variables on

the z component of the electromagnetic field, we can

write

Ezl = AJ~(k~r)cos(m~) (Plexp(-jf3z)

sin(m~)

+Pzexp(+ j/3z)) (la)

EZZ = CKJkOUtr)cos(m@) (Pl exp( – j~z)

sin(m~)

+Pzexp(+ jj?z)) (lb)

EZ3 = EJ~(k~r) cos(rmj) exp(– az) (lC)

sin(m+)

Hzl = B.7~(k~r) sin(nz~) (Pl exp( – j~z)

cos(mq5)

+P, exp(+ j/.?z)) (id)

Hzz = ~K~(/cOU,r) sin(rn+) (~1 exp( – jpz)

cos(mo)

+Pzexp(+ j~z)) (le)

HZ3= FJw(k~r) sin(m~) exp(– az) (if)

cos(rn~)

where k; = ezk~ –fIz, k$ = crk~ –@2 and k~u~ ‘/32 –

k;. Here m is the azimuthal mode number, ~ the longitu-

dinal dielectric propagation constant, kO the free space
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Fig. 1. Open dielectric crystal is analyzed in cylindrical coordinates

{r, ~, z}. Resonant frequencies are solved by matching tangential fields

between regions 1 and 2, and regions 1 and 3.

wave number, kOut the radial propagation constant out-

side the dielectric, and k~ and k~ the radial dielectric

propagation constants parallel and perpendicular to the

c-axis, respectively. From the z component, Maxwell’s

equations can then be used to obtain all other electro-

magnetic field components [12].

A. Radial Match

By matching tangential components of the H and E

fields between regions 1 and 2, the following transcenden-

tal equation is obtained:

(•x7r(~E)xE + %(Y) )(J~(x~) KA(Y)’

&Jm(xE) yK~( y) x~Jn(x~) + yKn( y) i

(x; +ErY2)(xi+ Y2) (2)

= mz
X;yd

where x~ = k~d/2, x~ = k~d/2 and y = kOUtd/2. For a

fixed diameter this equation is a function of two variables,

kO and ~.

In general y becomes imaginary for the lower order

whispering gallery-like mode families, where P is small

and m is large. In this case the Evanescent Bessel Func-

tion becomes a Hankel Function of the second kind [13].

Hence we employ algorithms which allow complex argu-

ments.

B. Axial Match

Field components EZ and HZ must be orthogonal in

space and hence cannot coexist with the same depen-

dence on z, Assuming the same dependence however

simplifies proceedings by allowing the axial match to be

calculated independently of the radial match. To be con-

sistent with the z dependence in (la)–(if), quasi TE

modes (Ez = O) or quasi TM modes (Hz = O) must be

assumed. Four different transcendental equations are de-

rived by matching tangential fields between regions 1 and

3. The radial and axial mode numbers are n and p,

Xh2
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Fig. 2. Intersections of (2) and (3a) are illustrated in {Xh2, Y2} space.

(a) TE61a mode. (b) TE612+8 mode. (c) Spurious solutions.
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Fig. 3. TM modes are excited by creating an E, field, while TE modes

are excited by creating a Hz field.

respectively:

1+ tan2 ( /3h /2)
TE *.P~a p even; k:= P2 (3a)

Er—l

P odd; k:#+cOt Q(@h\2) (3b)
er—l

~.,.~ p even; k:= Pz
1+ (tan (ph\2)/er)2

TM (3C)
C*—1

1 + (cot (@h ,/2),/’+2
p odd; k;= ~z . (3d)

<z—l

Equation (3a) is the same as derived by Garault and

Guillon [9], which was solved with the isotropic version of

Equation (2).

C. Solving the Coupled Equations

Equations (2) and (3) are solved using Mathematical

[14]. Solutions are found graphically on a x; versus yz

graph, then more accurately using a Newton–Raphson

technique. For a given value of m, (2) gives an infinite set

of solutions in {x;, y 2} space, which are almost perpen-

dicular to the xi axis. This distinguishes the radial mode
number n, and whether they are TE or TM. Equation (3)



TOBAR AND MANN: RESONANT FREQUENCIES OF HIGHER ORDER MODES IN DIELECTRIC RESONATORS 2079

Transverse Magnetic Modes

1< P&.

11.!+

4’ /?./

L’//’)

=tTA+F
57 9 11’ 1315 17

AAmuthal Mode Number m

(a)

Transverse Electric Modes

~L7/.
& C/$fiL=“

.s

,,, ,,, ,~
57 9 11 13 15 17

Azimuthal Mode Number m

(c)

Transverse Magnetic Q values

106~

E-
..

105

‘u 1

Azimuthal Mode Number m

(b)

Transverse Electric Q values

106 .

T ‘

‘“~
57 9 11 13 15 17

Azimuthal Mode Number m

(d)

Fig. 4. Mode frequencies and Q values as a function of azimuthal mode number, for a 50.0 mm diameter and 30.0 mm
high sapphire crystal. Theoretical points are plotted as error bars due to uncertainties in dimensions and permittivities,

while experimental points are joined by lines.

gives an infinite set of solutions nearly parallel to the x;

axis. Mode frequencies are solved from the intersection of

these two solution sets. Care must be taken to avoid

spurious solutions due to the restriction of p being either

even or odd or modes being TE or TM. Fig. 2 illustrates

how the solution of the TE

found graphically. ~
rjla in the Smaller sapphire is

III. EXPERIMENTAL VERIFICATION

A. Cylindrical Oriented Sapphire

Fig. 3 shows how quasi TE and TM modes are distin-

guished. To excite a TM or TE mode, an E= or HZ field is

excited, respectively. In reality all modes are hybrid, and

experimentally one can excite higher order axial mode

number families with either a TM or TE probe. Analysis

of azimuthal and axial mode numbers is done by observ-

ing the H+ or E+ field, respectively.
An experimental study of resonant modes was con-

ducted from 8 to 12 GHz for two cylindrical pieces of

sapphire with different aspect ratios, Figs. 4 and 5 com-

pare experimental and theoretical mode frequencies, and

observed open resonator Q values, There is better agree-

ment for the whispering gallery type families of low axial

mode number p, as they are more TM or TE like. The

difference between the calculated and measured ,mode
frequencies generally increases with p and decreases with

m, In the 50.0 mm diameter sapphire crystal for modes

with p = O the error is less than 0.1 %, which is smaller

than estimated uncertainties in permittivities and dimen-

sions, while above p = 2 errors can be of the order 1% in

TE modes and 2% in TM modes [15]. In the 31.8 mm
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Fig. 5. Mode frequencies and Q values as a function of azimuthal mode number, for a 31.8 mm diameter and 30.2 mm
high sapphire crystal. Theoretical points are plotted as error bars due to uncertainties in dimensions and permittivities,

while experimental points are joined by lines.

diameter sapphire crystal, the errors are generally larger:

for example about 0.2% for p = O modes.

The permittivity of sapphire above and below X-band

has been measured previously with slightly conflicting

results [16], [17]. To be consistent with both reports we
can be confident that e, is 11.6245+ 0.0355 and 11.355+

0.015 at 300 K and 4 K, respectively, and c, is 9.407 ~ 0.012

and 9.2895 + 0.0255 at 300 K and 4 K, respectively.

The power radiated from a given mode of the open

dielectric resonator could be calculated from the field

components (1) by integrating the Poynting vector over

the resonator surface, but is beyond the scope of this

paper. Within each mode family the power radiated from

the open resonator decreases as the azimuthal mode

number increases [10]. The observed open resonator Q

thus increases monotonically with m to a limit set by the

dielectric loss tangent. At roqm temperature and 10 GHz

this limit is about 20105 and scales inversely with fre-

quency [1]. For the 50 mm diameter sapphire the density

of modes in the 11 GHz region is large and interacting

modes are common. In this region some mode Q’s may

actually decrease for an increase in m due to reactive
coupling to nearby low Q modes [18].

B. Frequency Sensitivity

The sensitivities of mode frequency to perturbations in

permittivities and dimensions (A e,, AC=, A’d and Ah)

have been calculated for the large and small sapphires.

To within the precision of the calculation (0.2 to 2%) the

sums of the sensitivities obey the expected relations:



TOBAR AND MANN RESONANT FREQUENCIES OF HIGHER ORDER MODES IN DIELECTRIC RESONATORS 2081

and

c?f d c?f h
—–+—–=–l..
adf dhf

General trends are observed in the sensitivities, Within

a mode family as azimuthal mode number increases the

dependence of mode frequency on diameter increases.

For both TE and TM modes with high azimuthal and

low axial mode number the frequency depends mainly

( N 98%) on the diameter. As the axial mode number
increases the frequency dependence on the height in-

creases, and becomes comparable with diameter when

p >3 for TE modes and p >2 for TM modes. Quasi TE

modes have most ~f their electric field perpendicular to

the z-axis and are seen to depend manily on ~,, while

quasi TM modes have most of their electric field parallel

to the z-axis and depend mainly on e=. Within a mode

family this dependence on the respective dielectric con-

stant increases with azimuthal mode number. For the

higher order axial mode families (p> 3 for TE modes

and p >2 for. TM modes) the dependence on ●r and .s=

are about equal. Solutions are then in the hybrid regime.

This is why solutions are less accurate for these families

as (3) assumes pure TE and TM modes while (2) does not.

C. Applications to Sapphire Loaded Superconducting

Cavities (SLOSC)

Details of a high stability 9.73 GHz SLQSC oscillator

have been presented previously [3], [4]. The operational

sapphire resonance can now be identified as TE618, The-

ory predicts a 66 MHz shift in frequency when cooled due

to the change in dielectric constant, exactly what is mea-

sured.

Details of a tunable SLOSC have been presented previ-

ously [181, [19]. It consists of a 3 cm diameter cylindrical

sapphire crystal, and an axially driven tuning disc 0.3 cm

thick. Tuning ranges can be predicted with presented

theory. Modes with higher tuning ranges have larger axial

mode numbers. Modes analysed previously [18] at 4 K are

now identified as TE61a + ~ at 10.221 GHz and TM81a + ~ at

10.44 GHz. Tuning ranges of these modes are predicted

to be 94 and 99 MHz, respectively, which agrees favorably

with experiment.

IV. CONCLUSION

Improved theory for multimode analysis of anisotropic

dielectric resonators was presented. This has lead us to a

very good understanding of electromagnetic resonances in
sapphire crystals, with potential application to design.
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